Regularity criteria for strong solutions to the 3D Navier–Stokes equations
نویسندگان
چکیده
منابع مشابه
A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملTwo regularity criteria for the 3D MHD equations
This work establishes two regularity criteria for the 3D incompressible MHD equations. The first one is in terms of the derivative of the velocity field in one-direction while the second one requires suitable boundedness of the derivative of the pressure in one-direction.
متن کاملRemarks on Regularity Criteria for the 3d Navier-stokes Equations
In this article, we study the regularity criteria for the 3D NavierStokes equations involving derivatives of the partial components of the velocity. It is proved that if ∇he u belongs to Triebel-Lizorkin space, ∇u3 or u3 belongs to Morrey-Campanato space, then the solution remains smooth on [0, T ].
متن کاملRegularity Criteria Involving the Pressure for the Weak Solutions to the Navier-stokes Equations
In this paper we consider the Cauchy problem for the n-dimensional Navier-Stokes equations and we prove a regularity criterion for weak solutions involving the summability of the pressure. Related results for the initial-boundary value problem are also presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Systems Science & Control Engineering
سال: 2015
ISSN: 2164-2583
DOI: 10.1080/21642583.2015.1012310